Homotopy Theory of Modules over Diagrams of Rings

نویسندگان

  • J. P. C. GREENLEES
  • Michael A. Mandell
چکیده

Given a diagram of rings, one may consider the category of modules over them. We are interested in the homotopy theory of categories of this type: given a suitable diagram of model categories M(s) (as s runs through the diagram), we consider the category of diagrams where the object X(s) at s comes from M(s). We develop model structures on such categories of diagrams and Quillen adjunctions that relate categories based on different diagram shapes. Under certain conditions, cellularizations (or right Bousfield localizations) of these adjunctions induce Quillen equivalences. As an application we show that a cellularization of a category of modules over a diagram of ring spectra (or differential graded rings) is Quillen equivalent to modules over the associated inverse limit of the rings. Another application of the general machinery here is given in work by the authors on algebraic models of rational equivariant spectra. Some of this material originally appeared in the preprint “An algebraic model for rational torus-equivariant stable homotopy theory”, arXiv:1101.2511, but has been generalized here.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving System of Linear Congruence Equations over some Rings by Decompositions of Modules

In this paper, we deal with solving systems of linear congruences over commutative CF-rings. More precisely, let R be a CF-ring (every finitely generated direct sum of cyclic R-modules has a canonical form) and let I_1,..., I_n be n ideals of R. We introduce congruence matrices theory techniques and exploit its application to solve the above system. Further, we investigate the application of co...

متن کامل

Homotopy approximation of modules

Deleanu, Frei, and Hilton have developed the notion of generalized Adams completion in a categorical context. In this paper, we have obtained the Postnikov-like approximation of a module, with the help of a suitable set of morphisms.

متن کامل

NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS

In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...

متن کامل

AN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS

In this paper, we give a generalization of the integral dependence from rings to modules. We study the stability of the integral closure with respect to various module theoretic constructions. Moreover, we introduce the notion of integral extension of a module and prove the Lying over, Going up and Going down theorems for modules.

متن کامل

On nest modules of matrices over division rings

Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014